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Abstract. We present a method for metric optimization and template
construction in the Large Deformation Diffeomorphic Metric Mapping
(LDDMM) framework. The construction treats the Riemannian metric
on the space of diffeomorphisms as a data-embedding kernel in the con-
text of predictive modeling, here Kernel Logistic Regression (KLR). The
task is then to optimize kernel parameters, including the LDDMM metric
parameters as well as the registration template, resulting in a parame-
terized argminimum optimization. In practice, this leads to a group-wise
registration problem with the goal of improving predictive performance,
for example by focusing the metric and template on discriminating pa-
tient and control populations. We validate our algorithm using two dis-
criminative problems on a synthetic data set as well as 3D subcortical
shapes from the SchizConnect cohort. Though secondary to the tem-
plate and kernel optimization, accuracy of schizophrenia classification is
improved by LDDMM-KLR compared to linear and RBF-KLR.
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1 Introduction

The problem of image registration arises in a number of medical imaging con-
texts. The process of registering images underlies concurrent use of spatially
distributed information from multiple data sets, possibly collected at different
times or using different imaging modalities.



The practical goal of registration is spatial alignment. In addition, a subset of
registration algorithms has the benefit of establishing a formal distance between
images as a byproduct of spatial normalization. Of particular interest among
this class of methods is the Large Deformation Diffeomorphic Metric Mapping
(LDDMM) [1]. The distance between images defined by LDDMM derives from a
Riemannian metric on velocity fields. The distance is then a metric on diffeomor-
phisms, or the deformations themselves. The Riemannian structure implies the
possibility of using the metric as a kernel in a machine learning (ML) context.
Such a distance can be derived in a straightforward manner, as in [2] or as the
initial momentum ”slope.” The latter approach is taken here. Yet, to date, little
effort in this direction has been undertaken, in part due to the computational
complexity of the task. Further, the fact that the LDDMM distance is defined
on diffeomorphisms means that in practice the metric in a group of images will
be heavily dependent on the choice of the template image. The parameters of
the metric itself also significantly influence the registration results [3]. In light of
this, applying the LDDMM Riemannian metric as a kernel in a predictive model
requires optimization of both the metric parameters and the template. This is
the problem we address here. Kernel optimization is an established ML problem.
Several canonical kernel forms exist [4], many of which have been studied in the
context of metric learning [5], [6]. In line with this research, we extend previous
work on diffeomorphic metric learning in [2].

A related, though conceptually different notion of learning the LDDMM met-
ric focuses instead on spatially varying the kernel parameters [7] This method
allows to find more flexible metric representation, while still satisfying the metric
properties. However, the key difference lies in the cost function. In [7] and related
work, the metric is optimized with respect to standard registration costs, with
additional novel regularization on the LDDMM parameter distribution. Though
far more flexible than LDDMM with global parameters, the framework is still
conceptually similar to standard LDDMM in that it targets traditional pair-wise
registration problems. The metric is not learned in a predictive modeling (group-
wise) sense, and its inner product properties are not exploited in the sense of a
machine learning ”kernel trick.”

Similarly to what we do here, the authors in [2] developed an automatic
method to find LDDMM metric parameters for optimal classification accuracy.
However, there are two important distinctions: (1) rather than using the LD-
DMM Riemannian product, a distance-derived image similarity measure was
used instead. The previous method would be more accurately described as a
similarity learning approach. (2) Because only pairwise image distances were
used, no template optimization was performed. In fact, the improved template
construction, along with optimal registration parameters, potentially has greater
practical value to the imaging researcher than the classification tool itself. By
optimizing the template for a specific biological question, we enable a more
meaningful interpretation of traditional localized registration-based measures,
e.g. Jacobian determinant or momentum operator maps, in neuroimaging stud-
ies. The focus is thus not on classification accuracy, though it is indeed improved



over simpler models, but on template and parameter optimization. In this re-
spect, this work closely parallels the template construction and metric parameter
optimization in [8].

The remainder of the paper is organized as follows. Section 2 briefly describes
LDDMM. Section 3 builds the model and optimization specifics of LDDMM
kernel and template learning in the context of kernel logistic regression. Section
4 describes the synthetic and real brain MRI-based experiments, and 5 concludes
the paper.

2 Image Registration in the LDDMM Framework

Large Deformation Diffeomorphic Metric Mapping (LDDMM) was first intro-
duced and implemented in [1]. Since then, LDDMM has been extended into a
several methods. The main idea remains the same: to compute a matching diffeo-
morphism φ : [0, 1]×Ω → Ω, where Ω is the image domain and [0, 1] is the time
interval. The diffeomorphism φ can be seen from different points of view. In its
original definition, φ belonged to a large class of functions. For the purposes of
explicit computation, diffeomorphism φ can be considered as the flow generated
by the evolution equation:

∂φ(t, x)

∂t
= v(t, φ(t, x)),

φ(0, x) = x,
(1)

where v ∈ V is an element in the space of smooth vector fields.
Let I, J ∈ Ω be the source and target images, respectively. The optimization

problem for registering I, J is generally formulated as a cost function comprised
of a similarity measure between warped source and target images and a regular-
ization term:

E(v) =
1

σ2
d(I ◦ φ, J) + R(v) (2)

where σ2 is the normalization coefficient.
Here, we define similarity as the sum of squared differences (SSD) d(I◦φ, J) =

‖I ◦ φ− J‖2L2
, where I ◦ φ is the warped image.

The diffeomorphism space is a Lie Group with respect to (1) and it suggests
a right-invariance property, allowing to recall the adjoint representation and the
scalar product on the tangent space. Smoothness of the warp can be enforced
by defining an appropriate regularization term. As long as the tangent space
V has a well-defined inner product, regularization is defined by ‖·‖V through
a Riemannian metric L. The operator L should be naturally defined by the
geometric structure of the domain and implies smoothness. As it was in [1] L is
defined as an adjoint differential operator (3). Finally, regularization is defined as
the inner product integrated along the path of the diffeomorphism φv and shown
in equation (3). Note that here the superscript of φ defines the dependence on
v; we omit this below:



R(v) =

1∫
0

‖vt‖2V dt =

1∫
0

< Lvt, vt > dt

L = (α∆+ γE)2,

(3)

where ∆ is the laplacian operator and E is identity operator.
The regularization term can also be thought of as a distance between im-

ages, i.e. the minimal length of diffeomorphic path required to transform the
appearance of I to be as similar as possible to J . Path length is defined as an
integration of the velocity norm based on the corresponding Riemannian metric
along the path. Importantly, the velocity field is defined on vector space with all
the implicit properties.

The choice of the operator L is a trade-off between simplicity and expressivity.
We choose operator L as in the original paper [1]. It consists of two scalar
parameters, providing minimal flexibility for metric tuning. Parameters of the
operator (α, γ) correspond to convexity and normalization terms, respectively.
These parameters significantly affect the quality of the registration, as shown in
[3].

2.1 Kernel Construction

As was mentioned above, the LDDMM registration produces a properly defined
structure of interrelation between two images. One of several possible ways to
construct kernel matrix is to use the length of the path in the diffeomorphic
space. But since we consider registration to on a particular template, the inner
product of the vector space, where velocity fields defined, is a natural choice.
This accounts for diffeomorphic space geometry and employs the possible sim-
plification in the case of template-based registration.

The matrix of pairwise distances is considered as a kernel for the predic-
tive model and constructed as follows. Let xi ∈ D be an image, which af-
ter registration to on a particular template J produces a corresponding ve-
locity field and warping. The velocity field is constructed over time steps, de-
noted as vit = vi(t, φ(t, x)) for each image xi, i = 1, . . . , n. Every vector field
vi1, i = 1, . . . , n at time 1 is defined on the same tangent space at the identity
transformation i.e., at the template J . Since this tangent space admits an inner
product, the kernel is defined as k(xi, xj) =< Lvi1, v

j
1 >. From here on, the time

subscript will be omitted. As was mentioned above the meaning of such distance
is a ”slope” from source image to target image.

3 Metric Learning

In our work, we use Kernel Logistic Regression (KLR) as the base classifier. KLR
is a flexible and tractable method that can be naturally used in the proposed
method. Though a variety of classification and regression models admit kernels,



KLR is among the simplest and most robust, making minimal assumptions about
data distribution.

Let D = {(xi, yi)}ni=1 be a sample, where the target variable y ∈ {1, 0} is a
class label. KLR leads to the following optimization problem:

Loss(β) = −
n∑
i=0

(
yi · ln pi + (1− yi) · ln(1− pi)

)
+ C · ‖β‖2L2

pi =
1

1 + e−βT k(xi,x)
,

(4)

where k(xi, x) is a vector (k(xi, x1), . . . , k(xi, xn))T and C is a regularization
coefficient.

3.1 Optimization Strategy

To address the registration parameter selection problem, we provide a gradient
descent method as the strategy for optimizing the loss function (4) with respect
to registration parameters (α, γ, J). The pipeline is shown in (fig. 1) and an
outline of the algorithm is given in section 3.2. At the back propagation stage,
we consider the solution of LDDMM and the classifier to be fixed, denoting both
with a superscript (β∗, v∗).

Fig. 1: Schematic visualization of registration-based optimization al-
gorithm (vi corresponds to optimal solution of LDDMM for subject
i).

Briefly, the KLR and LDDMM optimization pipeline can be describe as fol-
lows. We initialize α, γ, J , compute the kernel, and find optimal KLR coefficients
. Next, we fix β∗, v∗ and update α, γ, J with the gradient step of the loss func-
tion (4). The parameters β∗ and v∗ are the solutions of the optimization problem
and depend on α, γ, J . Therefore the derivative of loss function (4) is a bi-level
optimization problem. The solution of a general bi-level optimization problem



is given in [9]. Below we provide step-by-step derivatives with respect to α, and
explain the main differences in derivatives with respect to J .

Denoting the train and validation subsets of the data asXtrain, Xval, ytrain, yval,
we compute β∗ as the argminimum of the loss function (4) on {Xtrain, ytrain}.
(Note that all unnecessary indices are again omitted.) The resulting gradients
are computed on the validation set based on the following equations (yi, xi ∈
{Xval, yval}):

dLoss(β∗)

dα
= −

nval∑
i=1

(
yi ·

d ln pi
dα

+ (1− yi) ·
d ln(1− pi)

dα

)
+ 2Cβ∗ dβ

∗

dα
(5)

Expanding the mixed partial derivatives, we write:

∂ ln pi
∂α

= −∂ ln(1 + e−<β
∗,k(xi,xtrain)>)

∂α
=

=
e−<β

∗,k(xi,xtrain)>

1 + e−<β∗,k(xi,xtrain)>
·
(

(β∗)T
∂xi
∂α

+
∂(β∗)T

∂α
xi

)
=

= (1− pi)
(

(β∗)T
∂xi
∂α

+
∂(β∗)T

∂α
xi

)
;

∂ ln(1− pi)
∂α

= −pi
(

(β∗)T
∂xi
∂α

+
∂(β∗)T

∂α
xi

)
(6)

∂k(xi, xtrain)

∂α
= [k(xi, xtrain) =< Lvi, vtrain >] =

=<
∂L

∂α
vi, vtrain > + < L

∂vi
∂α

, vtrain > + < Lvi,
∂vtrain
∂α

>

(7)

The gradients below are also computed exclusively on {Xtrain, ytrain}:

∂β∗

∂α
=

[
β∗ = argmin

β
Loss(β), (4), use formulae from ([9])

]
∂2Loss

∂β2
= XTBX + 2E

∂

∂α

∂Loss

∂β
=

∂

∂α
(XT (p− y)) =

∂XT

∂α
(p− y) +XT ∂p

∂α
,

(8)

where p and y correspond to the KLR probability vector and training labels,
and the matrix B is diagonal with entries pi(1− pi).

We can see that all derivatives above include dv∗

dα . To differentiate v∗ w.r.t.
the scalar parameters, we use the same bi-level optimization problem solution.

We use the finite difference approach rather than calculating ∂2E(v)
∂v2 for scalar

parameters such as α. In this work, we use the second order central finite dif-
ference. The same strategy can be used for γ. Also of note is that one of these
parameters in 2 is redundant. It is the ratio of α, γ, σ2 that is of import.



One of the possible ways to find the derivative of the template image J is to
treat it like a scalar intensity function J(x, y) defined on Ω. Each voxel’s inten-
sity is treated as independent from the rest. We suggest a combined approach to

obtain the derivative dv∗

dJ as in the bi-level problem [9]. The derivative ∂2E(v)
dJdv is

derived from the closed form of the full derivative [1]. As only the second term of
∂E(v)
dv depends on the template image J and each voxel in J is independent, the

final form of the derivative is substantially simplifed. Below, we describe the op-
timization strategy for 2-dimensional images. However, it can be easily expanded

to higher dimensions. To obtain ∂2E(v)
∂v2 we use a forth order central finite dif-

ference scheme for unmixed second derivative and for mixed second derivatives.
For computational reasons, this approximation uses two key assumptions: first,
only the voxel’s immediate neighbors are correlated; second, the entry vijy does

not interact with the entry vklx if i 6= k or j 6= l, where the superscript refers
to the axis, i, j, k, l are the corresponding voxel coordinates, and vx, vy denote
components of the velocity field.

3.2 Optimization algorithm

To summarize the previous section, We have two loss functions E(v) and Loss(β),
whose argminima v∗, β∗ parameterize the optimization of the registration param-
eters (α, γ, J). In practice, we find that (1) the LDDMM kernel multiplication
constant does not affect the solution of optimization task and only the ratio α/γ
has effect on the loss, we do omit the optimization of γ. The complete algo-
rithm consists of two main parts: the ”forward pass” and ”the backward pass”.

Result: (α∗, J∗)
α = α0, J = J0;
for i← 0 to N do

with fixed αi, Ji forward pass:
{
calculate v∗

i = argminE(v);
construct Kernels for train-val-test;
fit KLR on train;
evaluate metrics (ROC AUC) on val-test;
}
backward pass α, J :
{
calculate gradients (dLossdαi

, dLossdJi
) on val;

do gradient step:
αi+1 = αi − lr · dLossdα

Ji+1 = Ji − lr · dLossdJ
}

end
Algorithm 1: Pipeline of the proposed algorithm

https://www.mech.kth.se/~ardeshir/courses/literature/fd.pdf
http://www.holoborodko.com/pavel/2014/11/04/computing-mixed-derivatives-by-finite-differences/


4 Experiments

In our initial experiments, we used synthetic data to sanity-check our approach
and hippocampal shape data from the ShizConnect dataset [10]. In all experi-
ments, we fixed σ2 = 103 and γ = 1. As well as the step for finite differences
h = 0.1.

4.1 Synthetic Data

Fig. 2: Example of synthetic data: first row: train data, second row: test data
(rectangle is labeled as 1 and star - 0.)

Our initial experiments were based on 200 synthetic images with two balanced
classes: randomly rotated stars and rectangles (fig. 2). This task is very simple
from the classification perspective. The primary interest here is to assess the
validity of our simplifying assumptions in computing the derivatives, especially
w.r.t to the template image J . Here, we used 10-fold cross-validation, fitting the
L2 regularization term in KLR independently.

Fig. 3: Kernel matrix for the synthetic data set. The first half of the elements
corresponds to data points labelled as stars, and the rest to rectangles

The result of template optimization is shown in (fig. 4). First, we initialize
template J as the mean image of the training set. Next, we make a gradient step
on template J and update its initial value. We initialize α = 0.4. As we can see,
the template begins to look like a star. In this task, the classification-optimal
template appears to be closer to one of the classes. After iteration step 4, the



optimal template fluctuate around the template on 4 step. The distribution of
distances is plotted in (fig. 3). We note that the ROC area under the curve
(AUC) for this experiment is 1, achieving perfect classification.

Fig. 4: ’MEAN TEMPLATE’ image correspond to initialization of template as
mean image of training set, ’GRADIENT 2’ image is an example of derivative
∇JLoss(β∗) on iteration step 2, ’ITERATION i’ image is the template image Ji
on at the i’th iteration

4.2 Subcortical Shapes

Our 3D hippocampal shape sample was derived from the SchizConnect brain
MRI data set. We used right&left hippocampal segmentations extracted with
FreeSurfer [11] from 227 Schizophrenia (SCZ) patients and 496 controls (CTL).
All shapes were affinely registered to the ENIGMA hippocampal shape atlas
[12], and their binary masks were computed from the transformed mesh model
and used as the input data. Classes were balanced to reduce bias in classification
and template reconstruction. We used down sampled images in 4 time steps to
reduce computational time.

It’s worth to notice that the same pipeline can be applied to other subcortical
structures, such as amygdala or ventricles as well as the whole brain. Out method
produce individual optimal parameters for each structure since it depends on
geometry of image domain.

Our initial hippocampal experiments followed those for synthetic data, opti-
mizing only the template. We modified slightly the full optimization as described
above for (α, γ, J) as follows. First, we initialized all parameters. At each sub-
sequent step, we optimized (α, γ) and every 5 steps we updated the template
J . Initialization was analogous to what was done in synthetic experiments. We
show the initial and final template in figure 5. To compare the results, we used
a simple Logistic Regression on vectorized images and KLR with Radial Basis
Function (RBF) kernel. RBF-KLR appears to overfit substantially, likely because
the RBF embedding space is infinite-dimensional and not in regularized in any
domain-specific sense. Though LDDMM embedding is also infinite-dimensional,
the fact that it is derived from image-based regularization likely explains the
improved classification accuracy. Linear LR performs much better than RBF-
KLR, but is still inferior to LDDMM-KLR. ROC AUC scores of the models’
performance are shown in table 1.



Table 1: All results are rounded to 2 significant digits. The result is presented by
the best ROCAUC score, counted on the same test set. LR was performed with
a grid search to optimize the L2 regularization term weight. Registration-based
model was derived as described in the experiments section, for 11 iterations.

left hippocampal right hippocampal

Logistic Regression (LR) 0.77 0.74

Registration-based Optimized 0.81 0.83

Fig. 5: Hippocampal templates. (a) Mean initial template; (2) LDDMM-KLR
optimized template.

5 Conclusion

We have presented a novel method for diffeomorphic metric learning for image
registration and predictive modeling. The unique contribution of the paper is to
exploit the much-celebrated Riemannian structure of the LDDMM framework
in the essence concise representation of the geometry of objects. To show the
comprehensive view of our approach, we used a predictive task of practical utility.
Though we have focused here on 2-class classification problems, the framework is
general both with respect to the predictive modelling approach and the type of
target variable. For example, rather than using diagnosis and logistic regression,
we may as well have predicted the age of onset of Schizophrenia using kernel
Support Vector Regression. Our only requirement is that the ML model admit
kernels, and that the kernel optimization remains tractable for the given model.

A further improvement on previous work is the template optimization. Unlike
previous work on template optimization [8], which focused on intrinsic statistical
properties, we optimize a template with a specific predictive task in mind. In
this way, we learn a metric that highlights the most essential deformations with
respect to a specific biological question.
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